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Abstract

The convergence characteristics of the preconditioned Euler equations were studied. A perturbation analysis was

conducted to search for the relationships between the convergence characteristics and the flow Mach numbers. Also,

the influence of cancellation errors on the convergence characteristics was investigated. The governing equations were

the preconditioned two-dimensional Euler equations. Flows in a two-dimensional channel with a 10% circular bump in

the middle of the channel were calculated at different speeds. Roe�s FDS scheme was used for spatial discretization and

the LU-SGS (Lower Upper Symmetric Gauss Seidel) scheme was used for time integration. It was shown that the con-

vergence characteristics of continuity and momentum equations were maintained regardless of the Mach numbers, but

the convergence characteristics of energy equation were strongly dependant on the Mach numbers and worsened as the

Mach number decreased. The convergence characteristics were well explained by the perturbation analysis. The conver-

gence characteristics were strongly dependant on the characteristics of the preconditioning matrix. Cancellation errors

caused a serious convergence problem especially in the calculation of the energy equation at very low Mach numbers.

The relative treatments and a higher precision of floating-point variables alleviated cancellation problems to some

extent. However, the convergence rate was not affected by the relative treatments or by the precision of floating-point

variables.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

There is a great need for compressible algorithms to solve thermo-fluid-dynamic problems in low speed

flows. Incompressible algorithms are insufficient for low speed flows in which compressible effects are dom-

inant. Typical examples of compressible low speed flows can be found in natural convection flows in gas or
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.02.014

* Tel.: +82 52 259 2825; fax: +82 52 259 1681.

E-mail address: lsh@mail.ulsan.ac.kr.

mailto:lsh@mail.ulsan.ac.kr


S.-H. Lee / Journal of Computational Physics 208 (2005) 266–288 267
liquid phase, subsonic combustion in heat engines or burners, heat transfer in heat exchangers, and others.

Also, many flows involve a wide range of Mach number variation. Some examples include rocket motor

flows in which the Mach number is zero at the closed end and supersonic at the divergent nozzle exit,

high-speed flows with large embedded recirculation zones, multi-phase flows in which the Mach number

changes drastically through the phase boundaries, and flow over a wing at high angle of attack. However,
it is very difficult or impossible to solve low speed flows with a conventional compressible algorithm because

of slow convergence. The difficulty in solving the compressible equations for low Mach numbers is associ-

ated with the large disparity between the acoustic wave speed and the waves propagating at the fluid speed,

which is called eigenvalue stiffness. Preconditioning methods have been suggested to overcome this stiffness

problem. The preconditioning method pre-multiplies the time derivative by a suitable matrix that scales the

eigenvalues of a system of equations to the same order of magnitude, which makes it possible to provide a

solution valid for all Mach numbers.

There have been many research activities focused toward developing effective preconditioning algo-
rithms. The algorithm suggested by Viviand [1] was one of the first and the most complete, stating a gen-

eralized preconditioning procedure for a class of hyperbolic systems of equations and specific rules for

ensuring that the preconditioned equations remain well posed. Peyret and Viviand [2] presented additional

detailed considerations for preconditioning algorithms. After these works, a number of studies reported sig-

nificant improvements in preconditioning methods [3–6]. Choi and Merkle [7] suggested a preconditioning

matrix that introduced well-conditioned eigenvalues and pressure gradient terms. The preconditioning pro-

cedure of Choi and Merkle has been extended for use in many CFD applications [8–13]. Turkel et al. [14]

showed that the conventional compressible algorithms without an adequate modulation of the upwinding
or equivalently, the artificial viscosity, do not have the correct asymptotic behavior as the Mach number

approaches zero. This problem has drawn considerable attention [15–21]. Guillard and Viozat [17] reported

an extension of Roe�s FDS upwind scheme that is valid for low Mach number flows. Edwards and Roy [19],

and Edwards and Liou [20] reported an extension of the AUSM upwind scheme that is also valid for low

Mach number flows.

These works [14–21] also have analyzed the dependence of the variables and the system of equations

on the flow Mach number, which implied that the behavior of the system of equations or the conver-

gence characteristics would depend on the flow Mach number. Also, Lee [22,23] developed design cri-
teria for preconditioning methods and analyzed the relationship between convergence characteristics

and wave propagation mechanics. However, they did not take notice of the possibility that the conver-

gence characteristics of a specific equation in the system of governing equations might be different

from those of the other equations. Lee [24] showed that the convergence characteristics of the energy

equation of Euler equations were totally different from those of the continuity and momentum equa-

tions. Sesterhenn et al. [25] pointed out that the contribution of the kinetic energy to the total energy

at very low Mach numbers gives rise to cancellation errors, which would lead to a deterioration of

convergence characteristics of the energy equation. According to our knowledge, no extensive analysis
of the convergence characteristics of the preconditioned system of equations has been reported. Thus,

the present study was planned to investigate the convergence characteristics of the preconditioned Eu-

ler equations in more detail. A perturbation analysis is conducted to analyze the behavior of the gov-

erning equations and to search for the relationships between the convergence characteristics and the

flow Mach number.

Recently, Sesterhenn et al. [25] analyzed the cancellation mechanisms and reported that cancellation er-

rors played a significant role in calculating low Mach number flows. They also reported that the relative

treatments of variables and flux vectors led to improvements in the calculation of very low Mach number
flows. However, they did not mention the effects of precision of floating-point variables and the relationship

between the relative treatments and convergence rate. Thus, in the present study, the influences of the can-

cellation errors on convergence characteristics are investigated more thoroughly.
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There are some questions about the convergence characteristics of the preconditioned Euler equa-

tions. The first question is whether all the equations (continuity, momentum and energy equations)

have the same convergence rate in low Mach number flows. If not, then, which is the fastest or slow-

est? The second question is whether the convergence characteristics of an equation are kept constant

regardless of the Mach numbers. If not, then, what is the relationship between the convergence char-
acteristics and the Mach number? The third question is whether there is a Mach number limit prevent-

ing an equation from being fully converged. If then, what is the reason for the existence of the Mach

number limit?

In Section 2, the preconditioned governing equations are described and the behaviors of the governing

equations are analyzed with a perturbation method. Also, the relative treatment of the variables and flux

vectors are discussed. In Section 3, the numerical algorithms are described as are the flow conditions and

grid systems. Also, the precision of floating-point variables and the numerical methods are discussed and

symbolized. In Section 4, the calculation results are presented and discussed.
2. Preconditioned system of equations

2.1. Preconditioned Euler equations

The preconditioned two-dimensional Euler equations are expressed in the following form [7–13,19,20]:
C
oQ
ot

þ oE
ox

þ oF
oy

¼ 0; ð2:1:1aÞ

Q ¼

p

u

v

T

2
6664

3
7775; E ¼

qu

qu2 þ p

quv

qh0u

2
6664

3
7775 and F ¼

qv

quv

qv2 þ p

qh0v

2
6664

3
7775: ð2:1:1bÞ
The matrix C adopted in the present study is the preconditioning matrix of Choi and Merkle [7] represented

in the following form:
C �

1
b 0 0 qT

u
b q 0 qTu
v
b 0 q qTv

h0
b � 1 qu qv qcp þ qTh0

2
66664

3
77775; ð2:1:2aÞ

b ¼ M2
r c

2; where M2
r ¼ minð1;M2Þ: ð2:1:2bÞ
The eigenvalues of the preconditioned system of equations in the x-direction are:
kx ¼ u;
1

2
uð1þM2

r Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ð1�M2

r Þ
2 þ 4b

q� �
: ð2:1:3Þ
The symbol qT in the preconditioning matrix denotes the derivative of density with respect to temperature.

In some of the literature [8–10,12], the derivative of density with respect to temperature is ignored, leading

to a slightly different form for the preconditioning matrix
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C �

1
b 0 0 0
u
b q 0 0
v
b 0 q 0

h0
b � 1 qu qv qcp

2
66664

3
77775: ð2:1:4Þ
The influence of the derivative of density with respect to temperature will be discussed in detail in Section

2.3.

2.2. Non-dimensionalization

The governing equations (2.1.1) are non-dimensionalized with the thermodynamic and flow quantities at

infinite far field: p1 (pressure), q1 (density), T1 (temperature), c1 (speed of sound), R1 (gas constant), c1
(specific heats ratio), and L (characteristic length):
p̂ ¼ p
c1p1

; q̂ ¼ q
q1

; T̂ ¼ T
c1T1

; û ¼ u
c1

; v̂ ¼ v
c1

; ĥ0 ¼
h0
c21

; ð2:2:1aÞ

R̂ ¼ R
R1

; ĉp ¼
cp
R1

; x̂ ¼ x
L
; ŷ ¼ y

L
; t̂ ¼ tc1

L
; b̂ ¼ b

c21
: ð2:2:1bÞ
The speed of sound rather than flow velocity is adopted as the reference velocity for the purpose of repre-

senting the non-dimensional flow velocity as a function of Mach number. The ‘‘hat’’ notation stands for

non-dimensionalized quantities. Thus, the governing equations become
1

b̂c21
0 0 q̂Tq1

c1T1

û
b̂c1

q̂q1 0 q̂Tûq1c1
c1T1

v̂
b̂c1

0 q̂q1
q̂T v̂q1c1
c1T1

ĥ0
b̂
� 1 q̂ûq1c1 q̂v̂q1c1 q̂ĉpq1R1 þ q̂Tĥ0q1c21

c1T1

2
6666664

3
7777775
c1
L

o

ôt

p̂c1p1
ûc1
v̂c1

T̂ c1T1

2
6664

3
7775þ 1

L
o

ox̂

q̂ûq1c1
q̂û2q1c

2
1 þ p̂c1p1

q̂ûv̂q1c
2
1

q̂ĥ0ûq1c
3
1

2
6664

3
7775

þ 1

L
o

oŷ

q̂v̂q1c1
qûv̂q1c

2
1

q̂v̂2q1c
2
1 þ p̂c1p1

q̂ĥ0v̂q1c
3
1

2
6664

3
7775 ¼ 0 ð2:2:2Þ
and the thermodynamic state equation becomes
p̂c1p1 ¼ q̂R̂T̂q1R1c1T1: ð2:2:3Þ

Since c1p1 ¼ c21q1 and c1T1 ¼ c21=R1, the governing equations can be reduced to
1=b̂ 0 0 q̂T

û=b̂ q̂ 0 ûq̂T

v̂=b̂ 0 q̂ v̂q̂T

ĥ0=b̂� 1 q̂û q̂v̂ q̂ĉp þ ĥ0q̂T

2
66664

3
77775
o

ôt

p̂

û

v̂

T̂

2
6664

3
7775þ o

ox̂

q̂û

q̂û2 þ p̂

q̂ûv̂

q̂ĥ0û

2
6664

3
7775þ o

oŷ

q̂v̂

qûv̂

q̂v̂2 þ p̂

q̂ĥ0v̂

2
6664

3
7775 ¼ 0 ð2:2:4Þ
and the thermodynamic state equation can be reduced to
p̂ ¼ q̂R̂T̂ : ð2:2:5Þ
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The non-dimensionalized governing equations and the thermodynamic state equation are of the same

form as the original equations, respectively. Hereafter, the ‘‘hat’’ notations will be dropped for

convenience.
2.3. Behavior of system of equations: perturbation analysis

Some previous works [15–18,21] decomposed the pressure into a thermodynamic pressure and a per-

turbed pressure expressed as a function of Mach number and showed that the perturbation analysis was

a powerful method to explain the behavior of the system of equations. Thus, in the present study, an ex-

tended perturbation analysis is conducted to search for the relationship between the convergence charac-

teristics and the flow Mach number. This analysis is confined to low Mach number adiabatic flows in

which the variation of the Mach number does not exceed the Mach number itself. Then, due to the defini-

tion (2.2.1), the non-dimensionalized flow velocity is O(M), and the variations of the thermodynamic vari-
ables are so small that the non-dimensionalized thermodynamic variables are O(1). Thus, the orders of

magnitude of the non-dimensionalized quantities are as follows:
u; v � OðMÞ; p; q; T � Oð1Þ; h0 � Oð1Þ; cp � Oð1Þ; b � OðM2Þ: ð2:3:1Þ

Let the perturbation of flow velocity be the order of the Mach number
du; dv � OðMÞ: ð2:3:2Þ

Then, the order of the variation in the magnitude of kinetic energy per mass is
d
u2 þ v2

2

� �
¼ uduþ vdv � OðM2Þ: ð2:3:3Þ
In case of an adiabatic condition, the total enthalpy should be invariant
dh0 ¼ cpdT þ uduþ vdv ¼ 0: ð2:3:4Þ

Thus, the order of magnitude of the temperature variation must be O(M2). The variations of pressure and

density can be evaluated with the isentropic relations:
dp
p

¼ c
dq
q

¼ c
c� 1

dT
T

: ð2:3:5Þ
Since the orders of magnitude of the thermodynamic variables are O(1), the orders of magnitude of the var-

iation of the pressure and density are O(M2). Thus, the orders of magnitude of the variation of all the ther-
modynamic variables are O(M2)
dp; dq; dT � OðM2Þ; dh � OðM2Þ: ð2:3:6Þ

Now consider the response of the system of equations due to the perturbation (2.3.2). The variation of the

convection vector in the x direction can be expressed as follows:
dE ¼

dðquÞ
dðqu2 þ pÞ
dðquvÞ
dðquh0Þ

2
6664

3
7775 ¼

qduþ udq

2quduþ u2dqþ dp

qudvþ qvduþ uvdq

quðcpdT þ uduþ vdvÞ þ q hþ u2þv2

2

� �
duþ u hþ u2þv2

2

� �
dq

2
66664

3
77775: ð2:3:7Þ
With Eqs. (2.3.2)–(2.3.6), the order of magnitude of the convection vector variation can be expressed in the
following form:
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dE �

OðMÞ þOðM3Þ
OðM2Þ þOðM4Þ
OðM2Þ þOðM4Þ

OðMÞ þOðM3Þ þOðM5Þ

2
6664

3
7775: ð2:3:8Þ
An important aspect of Eq. (2.3.8) is that the magnitude range of the variation terms in the energy equation

is wider than that in the other equations. As mentioned by Sesterhenn et al. [25], the contribution of the

kinetic energy to the total enthalpy gives rise to cancellation errors, because the difference of the two terms

is much smaller than the total enthalpy. Thus, for the same reason, the wider range of the orders of mag-

nitude of the variation of energy flux gives rise to cancellation errors, which implies that the energy equa-

tion would suffer more cancellation problems than the other equations.

Now, let the right-hand side vector of the discretized governing equations be considered. It is well

known that the methods or schemes for the discretization of the convection flux vectors have great ef-
fects on the convergence characteristics of the discretized governing equations [14–20,26]. However, the

discretization problem is beyond the concerns of the present study. Thus, a well conditioned or an ana-

lytically proven discretization is assumed in the present analysis. Since the effective order of the magni-

tude of an element is determined by the largest order of magnitude, the effective order of magnitude of

the variation of the right-hand side vector in the discretized governing equations can be expressed as

follows:
RHS � Dt
Dl

OðMÞ
OðM2Þ
OðM2Þ
OðMÞ

2
6664

3
7775: ð2:3:9Þ
The notation Dl stands for a spatial grid size such as Dx or Dy. It should be noted that Dl/Dt has the dimen-

sion of velocity and the orders of magnitude of eigenvalues defined in Eq. (2.1.3) are the same as the order

of magnitude of the flow velocity. Thus, Dl/Dt has the order of Mach number if the CFL number is unity.

Thus, Eq. (2.3.9) becomes
RHS �

Oð1Þ
OðMÞ
OðMÞ
Oð1Þ

2
6664

3
7775: ð2:3:10Þ
From now on, the behavior of the solutions will be investigated. The explicit form of the system of equa-

tions is considered for simplicity. In the first place, let the preconditioning matrix ignoring the derivative of

density with respect to temperature be considered. From the viewpoint of the order of magnitude, the sys-

tem of equations can be expressed in the following form:
OðM�2Þ 0 0 0

OðM�1Þ Oð1Þ 0 0

OðM�1Þ 0 Oð1Þ 0

OðM�2Þ OðMÞ OðMÞ Oð1Þ

2
6664

3
7775

Dp

Du

Dv

DT

2
6664

3
7775 �

Oð1Þ
OðMÞ
OðMÞ
Oð1Þ

2
6664

3
7775: ð2:3:11Þ
Therefore, the order of the magnitude of the pressure change is O(M2) and the order of the magnitude of

the velocity change is O(M), which are well matched with Eqs. (2.3.3) and (2.3.7). Meanwhile, the order of

the magnitude of the temperature change is O(1), which is not matched with Eq. (2.3.7)
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Dp

Du

Dv

DT

2
6664

3
7775 �

OðM2Þ
OðMÞ
OðMÞ
Oð1Þ

2
6664

3
7775: ð2:3:12Þ
It should be noted that the numerical change of temperature due to the velocity perturbation disregards the

Mach number, which may lead to a serious deterioration of the convergence characteristics of the energy

equation, especially in very low Mach number flows. It should also be noted that this mismatch between the

physical variation of temperature and the numerical change of temperature is due to the characteristics of

preconditioning matrix.

Now, let the effects of the derivative of density with respect to temperature in the preconditioning matrix

be considered. The derivative of density with respect to temperature derived due to the thermodynamic

state equation is as follows:
qT ¼ oq
oT

�
p

¼ � q
T
� Oð1Þ: ð2:3:13Þ
The term C4,4 of the preconditioning matrix for a thermally perfect gas becomes
qcp þ h0qT ¼ q cp �
h0
T

� �
¼ � q

T
u2 þ v2

2
� OðM2Þ: ð2:3:14Þ
Thus, from the viewpoint of the order of magnitude, the system of equations can be expressed in the fol-

lowing form:
OðM�2Þ 0 0 Oð1Þ
OðM�1Þ Oð1Þ 0 OðMÞ
OðM�1Þ 0 Oð1Þ OðMÞ
OðM�2Þ OðMÞ OðMÞ OðM2Þ

2
6664

3
7775

Dp

Du

Dv

DT

2
6664

3
7775 �

Oð1Þ
OðMÞ
OðMÞ
Oð1Þ

2
6664

3
7775: ð2:3:15Þ
As mentioned in the articles [15,27], with Eq. (2.3.15), the energy equation essentially updates the pressure.

The magnitude of the pressure change is O(M2). The balance between the update in pressure and temper-

ature is then enforced by the continuity equation. Therefore, the order of magnitude of the temperature

change becomes O(1). This is the same result as derived from Eq. (2.3.11). Thus, the derivative of density

with respect to temperature does not affect the convergence characteristics.
2.4. Cancellation problems and relative treatments

In low Mach number flows, there is a large difference between a variable and its variation. It is well

known that round-off errors occur during numerical calculations if the difference of two numbers is much

smaller than either number. Thus, cancellation errors occurring as an accumulation effect of round-off er-

rors would play a significant role in calculating low Mach number flows. Many previous studies [7–10,12–

18] used the concept of gauge pressure in which the pressure was decomposed into a constant reference

pressure and a gauge pressure, and showed an alleviation of the cancellation problems. Sesterhenn et al.

[25] extended this concept and introduced the relative treatments of all the variables and flux vectors as

follows:
/ ¼ �/þ /0; / ¼ u; v; h0; p; T ; q; ð2:4:1aÞ

Ek ¼ �Ek þ E0
k; Ek ¼ E; F : ð2:4:1bÞ
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The part with an over-bar stands for a fixed one, while the part with a prime stands for a relative one. Thus,

the difference of a variable or a flux vector becomes the difference of a relative variable or a relative flux

vector as follows:
d/ ¼ d �/þ /0� 	
¼ d/0; ð2:4:2aÞ

dEk ¼ d �Ek þ E0
k

� 	
¼ dE0

k: ð2:4:2bÞ
Thus, governing equations can be represented in the following form:
C
oQ0

ot
þ oE0

k

oxk
¼ 0; ð2:4:3aÞ

Q0 ¼

p0

u0

v0

T 0

2
6664

3
7775 and E0

k ¼ quk

0

u0

v0

h00

2
6664

3
7775þ ðq0u0k þ �qu0k þ q0�ukÞ

1

�u

�v
�h0

2
6664

3
7775þ

0

p0d1k
p0d2k
0

2
6664

3
7775: ð2:4:3bÞ
The effects of the relative treatment on the convergence characteristics will be discussed thoroughly in Sec-

tion 4.3.
3. Numerical methods

3.1. Discretization

The governing equations (2.1.1) on the (x,y) coordinate system were transformed into the following form

on the (n,g) generalized coordinate system:
C
J
oQ
ot

þ o~E
on

þ o~F
og

¼ 0; ð3:1:1aÞ

~E ¼ nxE þ nyF
J

¼ 1

J

qU

qUuþ nxp

qUvþ nyp

qh0U

2
6664

3
7775; ~F ¼

gxE þ gyF

J
¼ 1

J

qV

qVuþ gxp

qVvþ gyp

qh0V

2
6664

3
7775: ð3:1:1bÞ

J ¼ oðn; gÞ
oðx; yÞ ¼

1

xnyg � xgyn
; ð3:1:1cÞ

U ¼ nxuþ nyv; V ¼ gxuþ gyv: ð3:1:1dÞ
A finite volume method was used to discretize the preconditioned governing equations. To get the flux vec-

tor at the surface of a grid cell, Roe�s FDS (flux difference splitting) scheme [17,28] was used. The van Alb-

ada limiter [29] was used to avoid numerical oscillations. The LU-SGS (Lower Upper Symmetric Gauss

Seidel) scheme [9,11,30] was used for time integration. Convergence rate is greatly dependant on the

CFL number, and a larger CFL number gives a faster convergence. In the LU-SGS scheme, it is possible

to determine the CFL number for Euler equations as a large one. In the present study, the CFL number was

fixed at 1000.
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Fig. 1. Contours of pressure, velocity and temperature at various Mach numbers.
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3.2. Geometry and grid system

In the present study, inviscid flows through a two-dimensional channel with a 10% circular bump in the

middle of the lower wall were calculated. The characteristic length is the height of the channel, L. The

length of the circular bump is L and the total length of the channel is 3L. Calculations were conducted
on three kinds of grid systems: grid systems P, S and L. Most of calculations were conducted on grid system

P, while the calculations for checking grid independence were conducted on the extra grid systems, grid sys-

tems S and L. Thus, if unspecified, grid system P was used. The number of grid points of grid system P, NG,

was 1950(=65[x] · 30[y]). The numbers of grid points of grid systems S and L were 1125(=45[x] · 25[y], 58%

of NG) and 3800(=95[x] · 40[y], 195% of NG), respectively. Grid points were clustered towards where the

gradients of solutions were large and towards upper and lower walls. The figures of grid systems P and

S are shown in Fig. 1.
3.3. Flow conditions and boundary conditions

The working fluid is air treated as an ideal gas. The stagnation pressure and temperature is 100 kPa

and 300 K, respectively. The initial thermodynamic and flow conditions are calculated based on an

assumption of an isentropic process. The inflow and outflow boundaries were specified with the charac-

teristic boundary conditions [26,31,32]. As suggested by Okong�o et al. [32], the density and velocity at

the inflow boundary were fixed, and the pressure was updated according to outgoing wave amplitude

variations determined from interior points. The pressure at the outflow was fixed, and the remaining
wave amplitude variations were determined from the interior points. The pressure, density, temperature

and magnitude of velocity on the channel walls were determined to be the same as those on the nearest

grid point from the wall, respectively. Also, the direction of the velocity on the slip wall was determined

to be tangential to the wall.
3.4. Algorithms and precision of floating point variables

The numerical algorithms used for the present study were realized with the standard C language. The
standard C language provides three types of floating point variables: single precision (‘‘float’’ in C lan-

guage), double precision (‘‘double’’ in C language) and extended double precision (‘‘long double’’ in C lan-

guage). The ‘‘float’’ type variable stores 7 significant digits, the ‘‘double’’ type variable stores 15 significant

digits, and the ‘‘long double’’ type variable stores 18 significant digits. In the present study, two kinds of

relative-variable treatments were used: only one for pressure and the other for flux vectors as well as all

the variables. In the present study, six combinations of algorithms and precisions were considered. For con-

venience, some symbols were introduced to distinguish the methods. Most calculations were conducted

with method DP. Thus, if unspecified, method DP was used. The meanings of the symbols are described
in Table 1.
4. Results

4.1. Verification of computation code

Fig. 1 shows the solutions of the flows at various Mach numbers. In subsonic cases, M 6 10�2, the
contours of pressure, velocity magnitude and temperature are almost symmetric, respectively. The asym-

metric features behind the bump are due to the difference in boundary conditions between the inlet and



Table 1

Symbols for numerical methods

Method Precision (C language) Relative variable Relative vector

SN Single (float) – –

SP Single (float) Pressure –

DP Double (double) Pressure –

DF Double (double) All variables Flux vectors

LP Extended double (long double) Pressure –

LF Extended double (long double) All variables Flux vectors
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exit planes. The flow fields at a Mach number of 10�4 seem to be almost the same as the flow fields at a

Mach number of 10�2. For the purpose of checking grid independence, the pressure fields calculated on
the two different grid systems were compared. The pressure fields calculated on grid system S seem to be

almost the same as those calculated on grid system P, regardless of the Mach number. This implies that

the grid system used in the present study has enough number of grid points. The case with a Mach num-

ber of 0.7 showed shock structures over the bump similar to those characteristic of transonic flows over

airplane wings. The case with a Mach number of 2.0 showed shock waves in front of the bump, expan-

sion waves, recompression shock waves behind the bump, and reflection shock waves on the upper wall.

It may be stated, therefore, that the computation code used in the present study was able to capture the

correct features of the flows at all Mach numbers. These results were almost the same as in previously
reported studies [12,19].

Also, numerical errors were quantitatively measured in order to verify the accuracy of the computation

code. The measured quantities were the changes in the total enthalpy (h0) and the entropy (s) between the

inlet plane and the exit plane of the channel. The change ratios of the total enthalpy and the entropy were

defined as follows:
Table

Chang

Mach

10�2

10�4
CRðh0Þ ¼ 1�
�h0;Exit
�h0;Inlet










; where �h0ðxÞ ¼

H
quh0 dyH
qudy

; ð4:1:1Þ

CRðsÞ ¼ 1� �sExit
�sInlet










; where �sðxÞ ¼

H
qusdyH
qudy

: ð4:1:2Þ
The results are shown in Table 2.

The errors of total enthalpy and entropy were very small even at a Mach number of 10�2. Thus, the pres-
ent computation code did not have a serious defect. The grid independence could be checked according to

the errors of the total enthalpy and the entropy on the additional grid systems. Even grid system S showed

very small changes of total enthalpy and entropy with respect to grid system P. Also, the changes of total
2

e ratios of total enthalpy and entropy

number Grid system Number of grid points CR(h0) CR(s)

S 1125(=45[x] · 25[y]) 3.67 · 10�9 3.40 · 10�8

P 1950(=65[x] · 30[y]) 2.14 · 10�9 3.17 · 10�8

L 3800(=95[x] · 40[y]) 1.86 · 10�9 2.89 · 10�8

S 1125(=45[x] · 25[y]) 2.52 · 10�13 6.64 · 10�10

P 1950(=65[x] · 30[y]) 2.09 · 10�13 6.60 · 10�10

L 3800(=95[x] · 40[y]) 1.84 · 10�13 6.58 · 10�10
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enthalpy and entropy on grid system L were almost the same to those on grid system P. Thus, the grid sys-

tem used in the present study seems to be a reasonable one.

4.2. Convergence characteristics

The decay of the residuals of pressure, velocity and temperature was calculated in order to quantify con-

vergence characteristics. The absolute value of each residual, rather than the ratio of each residual to its

initial value, was evaluated for the purposes of avoiding the dependence on the initial condition and setting
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Fig. 2. Convergence histories of pressure, velocity and temperature at various low Mach numbers.
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up a unified criterion of convergence. The averaged residuals of pressure, velocity and temperature were

defined in the following manner:
ResðpÞ ¼
P

i;jjDpj
NG

; Resðu; vÞ ¼
P

i;jjDuj þ jDvj
NG

; ResðT Þ ¼
P

i;jjDT j
NG

: ð4:2:1Þ
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Fig. 3. Changes of pressure and velocity fields due to iteration at various low Mach numbers.
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Fig. 4. Changes of temperature field due to iteration at various low Mach numbers.
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Fig. 2 shows the decay histories of the residuals of pressure, velocity and temperature versus iteration

number. The vertical guidelines indicate the minimum iterations required for sufficient convergence of

the governing equations. This will be discussed in the following paragraph. Reducing the Mach number

resulted in a smaller residual of pressure and a smaller residual of velocity, while the convergence rates (de-

cay slopes) were almost the same regardless of the Mach number. The gap in the pressure residual between
two adjacent curves at a particular iteration number was about 10�4 ðM2

1=M
2
2Þ, while the gap in the velocity

residual between two adjacent curves at a particular iteration number was about 10�2 (M1/M2). However,

the residuals of temperature coincided regardless of the Mach numbers. These observations were well

matched with the perturbation analysis mentioned in Section 2.3.
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Fig. 5. Convergence histories of pressure, velocity and temperature in renormalized form at various low Mach numbers.
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In order to find a criterion for sufficient convergence, the changes in pressure and velocity fields due to

iteration were plotted in Fig. 3, while the changes in the temperature fields due to iteration were plotted

in Fig. 4. From these figures, it is possible to roughly estimate the minimum number of iterations re-

quired for sufficient convergence of an equation. The minimum iteration number required for the con-

verged pressure field was about 600, while the minimum iteration number required for the converged
velocity field was about 800. It should be noted that the minimum iterations required for sufficient con-

vergence of pressure or velocity fields were the same, regardless of the Mach numbers. However, the

minimum number of iterations required for sufficient convergence of the temperature field depended

on the Mach number. Lower Mach-number cases required a higher minimum iteration number for the
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Fig. 6. Convergence histories of pressure, velocity and temperature at very low Mach numbers.
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converged temperature field. The minimum iteration number required for the converged temperature field

was about 2100 for the case with a Mach number of 10�2 and was about 3400 for the case with a Mach

number of 10�4. However, it was impossible to obtain a fully converged temperature field when the

Mach number was 10�6. There were serious wiggle patterns in the temperature contours, which were

due to the cancellation errors. The temperature field with a Mach number of 10�6 did not change after
about 4700 iterations.
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Fig. 7. Pressure and velocity fields at extremely low Mach numbers.
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To explain these observations and to set up a unified criterion for sufficient convergence, a renormaliza-

tion approach was introduced. As mentioned in Section 2.3, for an adiabatic flow condition, the variations

of pressure and temperature must be O(M2) when the variation of velocity is O(M). Therefore, rescaling or

renormalizing the residuals in a manner consistent with their own physical behavior would represent the

degree of convergence of all the equations with the same criterion. Thus, the residuals of pressure, velocity
and temperature were rescaled or renormalized byM2

1; M1 and M2
1, respectively. The renormalized resid-

uals were defined as follows:
RN-ResðpÞ ¼
P

i;jjDpj
NGM2

1
; RN-Resðu; vÞ ¼

P
i;jjDuj þ jDvj
NGM1

; RN-ResðT Þ ¼
P

i;jjDT j
NGM2

1
: ð4:2:2Þ
Fig. 5 compares the decays of the renormalized residuals at Mach numbers of 10�2, 10�4 and 10�6.

The renormalized residuals of the pressure and the velocity exactly coincided with one another, which

was consistent with the observations about the minimum iteration required for enough convergence.
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Fig. 8. Temperature fields at very low Mach numbers.
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However, the renormalized residuals of temperature did not coincide, but varied with the Mach num-

ber. The gap in the renormalized residuals of the temperature between two adjacent curves was about

10�4 ðM2
1=M

2
2Þ, which explains the reason why the minimum iteration required for sufficient convergence

of temperature fields increased as the Mach number decreased. The vertical guidelines, as mentioned

above, indicate the minimum iterations required for sufficient convergence of the governing equations.
It should be noted that each horizontal guideline located at 10�5 nearly intersects each renormalized

residual curve at the point of the minimum iteration required for sufficient convergence of each equa-

tion. Thus, the degree of convergence of all equations could be estimated with a unified criterion built

on the renormalization (4.2.2).
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In order to investigate further, the convergence problem at very low Mach numbers, the convergence

characteristics of temperature were compared with those of pressure and velocity. Fig. 6 shows the conver-

gence histories of pressure, velocity and temperature at very low Mach numbers below 10�5. All the renor-

malized residuals of pressure and velocity decayed below the guideline of 10�5 within a small number of

iterations. However, none of the renormalized temperature residuals dropped below the guideline of
10�5. Fig. 7 shows the contours of pressure and velocity at very low Mach numbers. There were almost

no problems in calculating the pressure and velocity fields at extremely low Mach numbers down to

10�15 even though such a Mach number hardly has physical meaning. However, there were serious conver-

gence problems in calculating the temperature field. Fig. 8 shows the temperature fields at very low Mach

numbers. Numerical oscillations began to appear when the Mach number was 10�6 and the situation wors-

ened as the Mach number went below 10�6. The case with a Mach number of 10�7 showed few recognizable

features in the temperature field.

4.3. Cancellation problems

As mentioned above, the convergence characteristics of temperature worsened as Mach numbers de-

creased, which made it difficult to calculate the temperature field in a very low Mach number flows. Also,

it should be noted that it was impossible to obtain fully smooth temperature contours with method DP

when the Mach number is less than 10�6. As mentioned in Section 2.3, this may be due to cancellation er-

rors. In order to clarify the cancellation problem, the effects of the precision of floating-point variables and
PRESSURE
M = 1.0E-02:SN

VELOCITY
M = 1.0E-02:SN

PRESSURE
M = 1.0E-15:SP

VELOCITY
M = 1.0E-15:SP

Fig. 10. Comparison of pressure and velocity fields between methods SN and SP at various low Mach numbers.
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the effects of the relative treatments were investigated. The calculation results of six kinds of methods (SN,

SP, DP, DF, LP and LF) were compared.

Fig. 9 shows the comparison of convergence histories among the methods. It should be noted that all the

methods showed almost the same slope of the residual decay until their residuals stopped decaying. This

implies that the convergence rate is not affected by the relative treatment or the precision of floating-point
variables. Method SN was the first to stop the decay of residuals followed by methods SP, DP, DF, LP and,

finally, LF in that order.

Fig. 10 shows the pressure and velocity fields calculated with methods SN and SP. Method SN did not

show converged solutions even though the Mach number was 10�2, whereas method SP showed the fully

converged pressure and velocity fields even though the Mach number was 10�15. This implies that the rel-

ative treatment of pressure guarantees sufficient convergence of the continuity and momentum equations at

very lowMach numbers. The temperature fields calculated with these methods are plotted in Fig. 11.Method

SN did not show converged solutions even though the Mach number was 10�2, while method SP showed
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Fig. 11. Comparison of temperature fields among methods SN, SP, DP, DF, LP and LF at various low Mach numbers.
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better qualities of temperature contours but did not show a fully converged temperature field even though

the Mach number was 10�2. This was due to the fact that method SP had single precision floating-point

variables and, thus, suffered serious cancellation problems during the calculation of energy equation.Method

DF showed a fully converged temperature field when the Mach number was 10�6, which was impossible

with method DP (see Fig. 8). This implies that the relative treatment of flux vectors alleviates the cancel-
lation problems to some extent. Method LP did not show a fully converged temperature field when the

Mach number was 10�7 but showed better temperature contours than that of method DF. On the other

hand, method LF showed a fully converged temperature field until the Mach number went down below

10�8. Some wiggle patterns of temperature contours began to appear when the Mach number was

5 · 10�9. These facts imply that a higher precision of floating-point variable gives more reduction of can-

cellation errors and that the precision of floating-point variables is a very important factor especially in the

calculations of the temperature field at very low Mach numbers.
5. Conclusions

In the present study, the convergence characteristics of the preconditioned Euler equations were inves-

tigated. A perturbation analysis was conducted to investigate the behavior of the governing equations and

to search for the relationship between the convergence characteristics and the flow Mach numbers.

An approach for the renormalization of the residuals according to the physical behavior of the variables

was introduced in order to estimate the convergence characteristics. The convergence characteristics of the
governing equations were well explained with a unified criterion built on the renormalizations.

The convergence characteristics of the continuity and momentum equations were maintained, indepen-

dent of the Mach number. However, the convergence characteristics of the energy equation changed with

the Mach number. A lower Mach number resulted in worse convergence characteristics for the energy equa-

tion. These observations were well explained by the perturbation analysis. The perturbation analysis also

showed that the convergence characteristics were strongly dependant on the characteristics of the precon-

ditioning matrix.

Some of the convergence problems of the energy equation at very low Mach numbers (below 10�6) were
found to be due to cancellation errors. It was shown that the relative treatment of pressure was essential in

the calculations of low Mach number flows and that the relative treatment of the variables and flux vectors

alleviated the cancellation problems to some extent. It was also shown that using a higher precision of the

floating-point variables led to a reduction of cancellation errors and that the precision of floating-point

variables was a very important factor in the calculations of the temperature field at very low Mach num-

bers. However, the convergence rate itself was not affected by the relative treatment or by the precision of

floating-point variables.
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